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ABSTRACT 

Laplace's tidal equation for diurnal tides of longitudinal number one is investigated. It is found that in addition 
to the previously found solutions (Hough Functions) corresponding to positive equivalent depths there are also 
Hough Functions corresponding to negative equivalent depths. Both are necessary for the representation of observed 
tidal data. 

As an application of the Hough Functions the diurnal surface pressure oscillation resulting from diurnal varia- 
tions in insolation is computed. It is found that the insolation model due to Siebert can account for only one-third 
of the observed pressure oscillation. 

i . INTRODUCTION 

In the study of at,mospheric tides, the diurnal tide 
has been relatively neglected; the semidiurnal tide has 
received most, of the attention. In recent years, however, 
with improved rocket data, it has been found that the 
diurnal period is dominant in mesospheric winds and 
temperatures (hliers [8], Beyers and Miers [2]>. As a 
result a renewed study of the diurnal tide seemed im- 
portant. Inevitably, the study of tides requires a knowl- 
edge of Hough Functions for the period and longitudinal 
wave number under consideration (Siebert [lo]). For 
the diurnal tide following the sun (i.e., ~ = + 1  day; 
longitudinal wave number = + 1) the relevant Hough 
Functions present some interesting problems. Haurwitz 
[5] has recently computed three of these functions and their 
associated eigenvalues (i.e., equivalent depths). He 
found that the computation of these functions in terms 
of Associated Legendre Polynomials was difficult insofar 
as each Hough Function required a substantial number 
of polynomials for its accurate representation. More- 
over, the amplitude of the functions he found was confined 
to within a region of 30' about the equator; i.e., within 
the critical latitudes wheref(=29 sin 6 )  equals 29 sin 30' 
(=%/I day). As a result it appeared that, a t  best, a 
great number of these functions would be needed to 
represent globally distributed functions. 

Because of the confinement to the region of 30" about 
the equator, it was felt by this author that an investigation 
of diurnal tides on an equatorially centered @-plane would 
yield simplified approximations to the Hough Functions 
and their associated equivalent depths. The resulting 
calculation will not be described in this paper since its 
results are not explicitly used. However, as was expected, 
good approximations to all the Hough Functions of the 

1 Present address National Center for Atmospheric Research, Boulder, COlo. 

type found by Haurwite and their associated equivalent 
depths were found. More interesting, however, was the 
fact that these were not the only eigensolutions. There 
was also an infinite set of eigenfunctions whose amplitude 
was concentrated outside the critical latitudes. The 
6-plane approximation is, of course, extremely bad a t  
these latitudes. On the other hand, the inclusion of these 
eigenfunctions is necessary if the total set of functions is to 
be complete. This, in turn, suggests that the set of eigen- 
functions used by Haurwite [5] is not complete. A new 
investigation of Laplace's Tidal Equation for a spherical 
surface was therefore undertaken. 

The remainder of this paper deals with that investiga- 
tion, its results, and their application. It was found that 
in addition to the eigensolutions found by Haurwitz, 
there is, in fact, another infinite set of eigenfunctions whose 
amplitude is concentrated outside the critical latitudes. 
Associated with these eigensolutions are negative equiva- 
lent depths.2 The existence of these eigensolutions proves 
the incompleteness of the original set. Moreover, the 
set of Hough Functions, including the new ones, proves 
quite suitable for the representation of observed tidal 
distributions. 

Finally, the Hough Functions are used in order to 
investigate the diurnal surface pressure oscillation that 
should result from diurnal variations in solar insolation. 

2. TIDAL EQUATIONS 

We will in this section be extremely sketchy in discussing 
the equations, since they are developed in detail elsewhere 
(Wilkes [Ill, Siebert [IO)). Briefly, t,he basic equations 
for the nth Hough mode corresponding to an oscillation 
of frequency w and longitudinal wave number s are 

3 The author is indebted to A, Elissen for showing him a recent paper by DikU 131. 
It is clear from this paper that the Russians are aware of the existence of negative eQUiVa- 
lent depths. However, they appear to have made no use of this discovery. 

* Oscillatmg gravitational potential is neglected. 
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and 

where 

c 
CO 

y=?= 1.40 

y-1 2 
Y 7  

K=-=- 

R=universal gas constant, 
M= molecular weight, 

g =gravi tational acceleration, 
O=rotation rate of earth, 
k = w / 2 Q  
a=radius of earth, 

J=heating per unit mass per unit time, 

z= altitude, 
p =longitude, 
O=latitude (with Oo corresponding to N. pole), 
p=cos cp, 

u=velocity in &direction, 
v=velocity in p-direction, 
w=velocity in z-direction, 

h,=equivalent depth of nth mode 

J,=nth Hough component of J, 

To(z) =basic temperature distribution, 

and 

The t and 4 dependence of Y,  are given by 

,i( w l + s & .  

(3) 

(4) 

The x (or z )  dependence and the p (or e) dependence OF 

In order to solve equations (1) and (2) boundary condi- 
tions are needed. Boundedness over the entire latitude 
domain is sufficient for equation ( 2 ) .  This leads to an 
eigenfunction-eigenvalue problem. Equation (2) is 
Laplace's Tidal Equation; its solutions are known as 
Hough Functions after Hough [6] who first solved this 
equation in terms of series of Associated Legendre Poly- 
nomials. Its full study has, however, yet to be made. 
Having obtained the eigenvalues of (2), we express these 
in terms of equivalent depths, h,, and use them in equation 
(1) which is then solved for the vertical structure of the 
tide. In this paper we will restrict ourselves to an iso- 
thermal atmosphere where H=constant. Then (1)  
becomes 

where 

The lower boundary condition for (11)  is derived from the 
condition that 

wn=O at  z=x=O. (13) 

Using (8) we see that this implies that 

-+(K-2) H 1 Y,=O at<x=o. dY,  
dx 

yn  are separable, equation giving the former and (2) The solution of (11) will have a particular part corre- 
the latter. I t  is 
common practice to use Y, to represent only Y,'s 
x-dependence and 8, for Y,'s p-dependence; we will adopt 

The conventional tidal fields may all be expressed con- 

In effect, h, is the separation constant. sponding to the inhomogeneity on the right hand 
and a homogeneous solution of the form 

this practice here as well. A,ei@+ B,e-'bz (15) 

veniently in terms of Y,O, by the following equations: when the plus sign obtains, or 
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An&"$ Brie-"." (16) 

when the minus sign obtains. 
If we assume that Jn(s)-jO as e+-, then the par- 

ticular part of Y,  will also do this. Thus the particular 
solution will automatically satisfy any reasonable upper 
boundary condition. The upper boundary condition will, 
therefore, involve only the homogeneous solution. Two 
physical conditions will be invoked in order to obtain 
this condition. First we demand that the kinetic energy 
in an infinitely high column of unit cross-section be 
finite. As Wilkes [ l l ]  shows, this implies A,=O when 
expression (16) is appropriate. When (15) obt,ains, 
another condition is required. Since we have a local 
source of energy, a reasonable condition is that the energy 
flow at z = m  be strictly upward. Wilkes shows that this 
implies B,=O in (15). 

3. SOLUTION OF LAPLACE'S TIDAL EQUATION 

Recalling that we will now designate Y ,  's p-dependence 
by 6 , ( p ) ,  we must replace Y ,  by 6, in equation (2). 
Following Hough [6] we expand 8, in terms of Associ- 
ated Legendre Polynomials P,, where s = l ,  m z l .  
m odd corresponds to functions symmetric about the 
equator. Thus 

m 

6,=c 6'$')ph. (17) 

The properties of Associated Legendre Polynominals are 
extensively discussed in the literature (Hough [6], Morse 
and Feshbach [9], Belousov [I]). When (17) is substituted 
into (2) and s is set equal to  one, one gets the following 
set of equations for (7;) : 

(m-1) 

m = l  

w 

where m = l ,  3, . . . for symmetric functions and m=2, 
4, . . . for asymmetric functions. 

Hough [6] simplified (18) in an illuminating fashion by 
introducing auxiliary functions D,, defined as follows : 

Equation (19) becomes 

Equations (19) and (20) represent tm infinite number of 
lineax, homogeneous equations in an infinite number of 
unknowns: 

C" 1 ,  C" a ,  Cc), . . . and D p ) ,  D:"), DJ"), . . . 
for the case of symmetric eigenfunctions. In  order that a 
solution to (20) and (21) exist, the infinite determinant of 
their coefficients must equal zero: i.e., 

- A 4 1  L, 0 0 o . . .  
Kz -N2 Lz 0 o . . .  
O KS -M3 L, O . . . 
0 O K4 -N4 Lq . . . =0, 

. . . .  
. . . . .  
. . . . .  

where 

and 

In the consideration of (21), a few comments on the 
difference between Hough's objectives and ours are in 
order. Hough was dealing with the free oscillations of an 
ocean of constant depth. Thus, he sought those values 
of w which would satisfy (21). In  our problem, we are 
fixing w, and seeking those values of h which satisfy (21). 
Hough found that the solutions of (21) were associated 
with the solutions of 

M,=O, (26) 
and 

N,=O. (27) 

The former, known as solutions of the first kind, cor- 

$ 
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9 
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29 

respond to oscillations wherein inertial terms dominate 
Coriolis terms. The latter, known as solutions of the 
second kind, correspond to Rossby waves where Coriolis 
terms are, of course, very important. In our case where 
w is fixed and h is allowed to vary, M ,  can still have a 
zero, but N ,  is a constant and, hence, cannot have a 
zero. Siebert [IO] and Haurwitz [5] among others, there- 
fore, restrict themselves, when dealing with fixed periods, 
to solutions of the first kind. As may be seen frorn (24), 
these are associated with positive h’s. The N,’s, how- 
ever, are not unimportant. It turns out that their 
presence, and the presence of the nondiagonal terms in 
(21) give rise to additional solutions, not associated with 
the zeroes of MTL, and for u=Q and s= l ,  involving 
negative h’s. 

The easiest way to see this is to outline the actual 
solution of (21). In  order for (17) to converge, C, must 
approach zero as m - m .  According to (20) so must D,. 
Therefore, a given solution of (21) is also an approximate 
solution of equation (21) when the determinant is trun- 
cated after a sufficiently large number of terms. Let 
r=hg/fZa2 and let D,(z)=the ZXZ truncation of the de- 
terminant in equation (21). In practice we solve D,(x)=O, 
and see if the solution is considerably altered by consider- 
ing D,+,(x)=O. We continue this process until the root 
is negligibly altered. We then substitute the value of x 
obtained into equations (19) and (20) and solve for C,. 
For example, consider 

___. 
-1 

0.8968 
0.4401 
0.04534 
0.0020 

~ 

D2 (x) = 0,  (28) 

with s = l  and u = O = + j ;  M1=-8x, L,=1.2, K,=1.5, and 
Nz=2. The solution of (28), therefore, is 

We now continue the process and find that D7(x)=0 
yields x=-0.139, and Dl2(x)=0 yields x=-0.1390. In 
this manner we have found the first two negative solutions 
of (21), and their associated eigenfunctions. The two 
solutions are designated by the subscripts -1 and -3. 
Haurwitz [5] has found the first three positive solutions 
and these will be designated by the subscripts +3, +5, 
and +7.  These values of J: together wit’h their associated 
equivalent depths are given in table 1; also shown are 
the An’s (see equation (12)). 

The idea of a negative equivalent depth may seem 
unreasonable, but, in fact, the name-equivalent depth- 
is misleading. What meaning it has may be seen from 
a study of equations (11), (12), (15), and (16) in conjunc- 
tion with equations (6), (7), (8), and (10). Assume that 
the plus sign obtains in (11) and that the homogeneous 
solution (15) is therefore appropriate. We see from 
equations (6), (7), (8), and (10) that the amplitudes of 
the u, v, w, and 87‘ fields increase with altitude as e212. 
When, however, h is negative, the negative sign obtains 
in ( I l ) ,  and moreover, k>4. Therefore, in this case the 

TABLE 1.-Eigenvalues of Laplace’s Tidal Equation and associated 
numbers ( w = 4  s=1)  

-1 -3 +3 +5 +7 t-1 -0.1390 I--( -0. 1 9 8 7 x 1 ~ 1  +o. moxi0-a 1 +o. 1380x1~-a t o .  0 5 5 5 x 1 ~ 2  

-0.1225XlO.r -0.1751X10‘ $0.6987X1@ +O. 1216X103 +O. 4890X102 

0.6643 1 1.2601 I 1.762 I 4.361 1 6.904 

amplitudes of the u, v, w, and 6T fields actually decrease 
with altitude. 

We will express the Hough functions corresponding to 
the abovedescribed equivalent depths as follows : 

where Pk is a normalized Associated Legendre Polynomial 
(tabulated in Belousov [I]) 

J - 1  

and 

We have also set 
c (Q2=1, (33) 
m=1 

thus normalizing the 0,’s. The normalization will, of 
course, be slightly changed when we include more terms 
in (30). The enis them- 
selves are shown in figure 1. For positive n, e, has 
increasingly less amplitude outside the critical latitudes 
as n increases, while for negative n, 8, has increasingly less 
amplitude within the critical latitudes as n increases. 
However, e-1 and e-3 still have considerable amplitude 
within the critical latitudes. Therefore, if we wish to 
expand a function with amplitude distributed throughout 
the latitude domain in terms of e-3, e+5, and 
e+,, we should get a good representation near the equator 
and a poorer representation near the poles. 

The Ern’s are given in table 2. 

TABLE 2.--Coeficienls a for expansion of 8 in terms of Fi 

-3 

-0.2703 
0.4613 
0.7731 
0.3302 
0.0688 
0. 0081 

_ _ _  

n 

+3 1 +5 ~ _ _ _ _  
0.2842 

-0.6402 
0. file5 

-0.0738 
0.1573 

-0.0594 
-0.2401 
+ O .  5150 
-0.5807 +o. 4574 
-0.2757 
+O. 1332 
-0.0530 

0.0177 
-0.0051 

0.0012 

+7 

0.0378 
-0.0800 

0.0239 
0.1331 

-0.2388 
0.1500 
0.1088 

-0.3795 
0.5197 

-0.4977 
0.3785 

-0.2386 
0. 1283 

-0.0581 
0.0216 
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4. EXPANSION OF OBSERVED PRESSURE 
Since the latitude dependence of observed tidal fields is 

almost always expressed in terms of Associat,ed Legendre 
Polynomials, it proves useful to expand these in terms of 
Hough Functions. This is rendered particularly simple 
as a result of the use of normalized Hough Functions. It 
is easily shown that 

Fm=x n R;e&). (34) 

In figure 2 we show F:, Pi and their representations in 
terms of e+ e.+ e+3, e+5J and e+,. As suggested in 
section 3, the representations are quite accurate near the 
equator, but relatively poor a t  higher latitudes. Never- 
theless, the nature of the approximation and its con- 
vergence are clearly indicated in the figure, and we may 
safely use the approximate representations. 

As an example, let us consider Haurwitz's [5]  repre- 
sentation of the solar diurnal oscillation in the surface 
pressure (in pb.): 

S:(P0)=535.8[p:-0.2966&] sin (t+cp+ 12"). (35) 

With the use of (34), (35) may be approximately repre- 
sented as follows : 

~:(~~)={410.6e_~-2is.ie_, . . . +254.0e+~ 
-64.58+5+32.978+7 . . . } sin (tS9-I-12"). (36) 

In figure 3, we show Si(P,) as given by (35), as approxi- 
mated by (36), and Haurwitz's representation in terms of 
the first three Hough Functions of the first kind. Clearly 
the last is an extremely poor representation. Equation 
(36) gives a much better representation-oscillating about 
the actual curve. The accuracy of the representat,ion 
near the equator suggests that similar accuracy could be 
obtained at  high latitudes by the inclusion of another two 
Hough Functions of the second kind. The present 
representation is, however, adequate for our purposes. 

r 1 
180 150 120 90 60 30 0 

LATITUDE 

FIGURE 1.--8-1, 0 -3 ,  9 + 3 ,  e+&, and 0 + 7  as functions of latitude. 

I I 

1 R [@ 

180 150 120 90 60 30 0" 
LATITUDE 

FIGURE 2.-E, 9, and their representations in terms of e-,, 
0 + 3 ,  %+5, and %+7. 

5. SURFACE PRESSURE OSCILLATION DUE TO SOLAR 6oo- 

INSOLATION 500. 

According to Siebert [lo], the diurnal heating due to boo- 

insolation is given by an expression of the form 

iUR - 
KM m 

J=-- e-'f3C ;,&(p) sin (t-tcp). 

It is a simple matter, using (34), to rewrite (37) as 

iUR 

5 90 60 30 0' 

J=- K2M e -213 sin (t+cp) C T m e m b ) .  
m 

Then, the Jn's in (11) become 150 120 
LATITUDE 

and (11) becomes 
213-976 0 - 66 - 3 

(39) FIGURE 3.--S:(p0), its representation in terms of five Hough Func- 
tions, and its representation by Haurwitz in terms of e+3J 8+6 ,  

and %+,. 
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n ’ 

Amplitude rn (pb. (leg.-‘) 

Phase rn (deg.) 

For positive hn, the plus sign is appropriate and, using the 
boundary conditions indicated in section 2, one gets 

i w  H rn 4 H  --- 
Y n =  

-1 -3 +a +.5 +7 

8. 7O7X1O2 1.240X103 1.891X10~ a 113x102 5.141XiO~ 

-----___________ 
--I_____.- 

180 180 236 255.3 260.5 

For negative h,, (40)’s solution is 

We wish to obtain the surface pressure oscillation resulting 
from the Jn’s. I t  is easy to obt8ain from equations (9) 
and (14) the well known result 

, and for negative h, 

Equations (44) and (45) may be rewritten 

@n(O) =Cnrn* (46) 

We will take T0=28Oo and Po(0)=lOOO mb. H becomes 
8.2 km. Using these values and the results in table 1, 
we may calculate the r,,’s. These are given in table 3. 

Several 
sets are available from the literature, though not all are 
appropriate. In table 4 we list sets of 7,’s deduced from 
the semiempirical estimates of Haurwitz [4], and the theo- 
retical estimates of Kertz [7] and Siebert [lo]. Siebert’s 
values are due solely to insolation, while Kertn’s values 
include both radiation and turbulent transfer. Similarly, 
Haurwitz’s values include these effects. A simple correc- 
tion may be applied to Haurwitz’s values. We may sub- 
tract Siebert’s values from those of Kertz in order to 
obtain an estimate of the effect of processes other than 
insolation. These quantities may then be subtracted from 
Haurwitz’s values in order to obtain semiempirical esti- 

There remains the problem of selecting the rn’s. 

+5 

+7 
__ 

__ 

TABLE 4.-Vurious T ~ ) S  

I I I I 

Haurwitz Needed to 
Haurwitz 1 Kertz I Siebert I (corrected) 1 vieldobserved 

t m p .  1 Ph: 1 Amp. 1 Ph. I Amp. 1 Pb. I Amp. I Ph. I Amp. I (F’&,, 
OK) (deg) (OK.) (deg.) (OK.) (deg.) (OK.) (deg.) (OK.) 

1.211 233 0.803 225 0.157 180 0.502 233 0.472 192 
--------I_- 

0.141 1 G 1 0.204 1 45 I 0.055 I o 1 0.100 1 259 1 0.176 1 12 

0.098 I 216 I 0.207 1 225 1 0.062 1 180 1 0.167 1 73 I 0.134 1 136 

0.029 0.054 0.016 0.040 254 0.079 297 

0.015 1 2: I 0.028 I i: 1 0.008 1 18; I 0.020 1 74 I 0.W I 111 
__-______----- 

mates for the insolation effects. The resulting values are 
included in table 4 too. Also included in table 4 are 
those values of 7,  that would result in the observed 
pressure as given by equation (36). 

We see from table 4 that Siebert’s values for the Tn’s-are 
too small by approximately a factor of three to yield the 
observed diurnal surface pressure oscillation. Although 
Haurwitz’s [5] average observed pressure distribution is 
only a relatively crude fit to widely scattered data, errors 
on this order seem unlikely. On the other hand, 
Haurwitz’s [4] corrected values of T ,  appear to be close 
to  the necessary amplitudes. There are, however, con- 
siderable errors in their phase. In  some recent calcula- 
tions which the author will publish shortly, it is shown 
that the contribution of ozone heating to the surface 
pressure oscillation is by no means insignificant (ca. 
170 bb.), and hence these discrepancies should not be 
surprising. 

-i 

6. CONCLUSIONS 

It is found that the Hough Functions computed by 
Haurwitz are not complete and hence the fact that they 
are not suitable for representing the observed data is not 
surprising. When the additional Hough Functions cor- 
responding to negative equivalent depths are added to the 
set, the completeness of the set and its suitability for 
representing the observed data become evident. 

As an application of the above results, we have in- 
vestigated the diurnal surface pressure oscillation that 
should result from solar insolation. Jn agreement with 
current notions in tidal theory we find that there is 
nothing surprising about the small amplitude of the 
observed surface pressure oscillation. Quite the reverse- 
we find that Siebert’s insolation model can account for 
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only about a third of the observed diurnal pressure 
oscillation. However, a crudely modified version of 
Haurwitz’s [4] semiempirical model for heating results 
in approximately the observed amplitude for 6p; in- 
solation remains the likely main cause for the surface 
pressure oscillation. 
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